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Abstract: Parallel computing can offer an enormous advantage regarding the 
performance for very large applications in almost any field: economics, scientific 
computing, computer vision, databases, data mining. GPUs are high performance 
many-core processors that can obtain very high FLOP rates. Since the first idea of 
using GPU for general purpose computing, things have evolved and now there are 
several approaches to GPU programming: CUDA from NVIDIA and Stream from 
AMD. CUDA is now a popular programming model for general purpose 
computations on GPU for C/C++ programmers. In this paper we present an 
implementation of some iterative and direct linear systems solvers that use the CUDA 
programming model. Our CUDA library is used to solve macroeconometric models 
with forward-looking variables based on Newton method for nonlinear systems of 
equations. The most difficult step for Newton methods represents the resolution of a 
large linear system for each iteration. Our library implements LU factorization, 
Jacobi, Gauss-Seidel and non-stationary iterative methods (GMRES, BiCG, 
BiCGSTAB) using C-CUDA extension. We compare the performance of our CUDA 
implementation with classic programs written to be run on CPU. Our performance 
tests show speedups of approximately 80 times for single precision floating point and 
40 times for double precision.  
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1. INTRODUCTION 
 
 Advances in the computational power have a large influence on almost all 
fields of scientific computing. Although, during the last decade, microprocessors’ 
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performance has significantly increased and new architectures like multi-core 
processors has appeared, there are still problems that cannot be solved on a single 
desktop computer (Creel, 2008).   
 One of the fields that need a special attention is macroeconometric modeling. 
Macroeconometric models with forward-looking variables are a special class of 
models which involve very large systems of equations. The matrices resulting from 
these models could be so large that doesn’t fit with the internal memory of a single 
desktop computer. For such models it is necessary to develop high performance 
parallel algorithms that can be run in parallel execution environments like parallel 
computers, clusters of workstations or grid environments. 
 A special kind of macroeconometric models are the rational expectations 
models (Fischer, 1992). These models contain variables that forecast the economic 
system state for the future periods t + 1, t + 2, ... , t + T, where T is the forecast time 
horizon. Depending on the size of the forecast time horizon, macroeconometric 
models with rational expectations could give raise to systems with tens or hundreds of 
thousands of equations. 
 For example, MULTIMOD model (Isard, P., 2000), (Masson, P, 1990) is a 
dynamic, annual forecast model designed by the International Monetary Fund that 
describes the economic behaviour of the whole world decomposed in 8 industrial 
regions and the rest of the countries. The model contains 466 equations. If we want to 
solve the model for a 30 years time horizon then we will have to solve a nonlinear 
system containing 13908 equations which is not a simple task nor for the most 
powerful workstations. 
 QPM (Quarterly Projection Model)( Armstrong, J, 1995) (Coletti, D., 1996) is 
a quarterly model developed by the Bank of Canada to obtain economic forecasts and 
as a research tool for the analysis of macroeconomic policies and economic 
equilibrium on long term. The QPM model has 329 nonlinear equations. The 
resolution of the model for a 30 years time horizon means to solve a system of 39480 
equations. 
 FRB/US (Brayton, F., 1996, 1997) is a quarterly econometric model that 
describes the U.S. economy and has around 300 equations. An extension of this model 
is FRB/GLOBAL that describes the world economy using few thousands equations. 
The resolution of these models for a 20-30 years time horizon implies nonlinear 
systems with hundreds of thousands of equations. 
 Let’s consider the general form of the nonlinear model with rational 
expectations: 
  hi(yt,yt-1, ... ,yt-r,yt+1|t-1, ... ,yt+h|t-1, zt) = 0,   i = 1,... m   
where 1−+ tjty  is the expectation of yt+j conditioned on the information available at the 
end of the period t-1 and zt represents the exogenous and random variables. For 
consistent expectations, the forward expectations 1−+ tjty  have to coincide with the 
next period’s forecast when solving the model conditioned on the information 
available at the end of period t-1.  These expectations are therefore linked in time 
and solving the model for each yt conditioned on some start period 0 requires each 
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yt+j|0 for  j = 1,2, ... T-t and a final condition yT+j|0 , j = 1, 2 ..., h. Considering these 
equations for successive time periods a large nonlinear system of equations will 
result. 
 One of the first methods used to solve such models was the extended path 
algorithm proposed by Fair and Taylor (Fair, R.C., and J. B.Taylor 1983). They use 
Gauss-Seidel iterations to solve the model, period after period, for a given time 
horizon. The convergence of this method depends on the order of the equations. The 
endogenous forecast variables are considered as predetermined and then the model is 
solved period after period for a time horizon.  
 The solutions thus obtained represent the new values for the forecast variables. 
The process is repeated until the convergence is obtained. The advantage of this 
method is it’s simplicity in implementation and the low storage requirements but this 
method has a main disadvantage: if the initial values for the endogenous variables are 
not "well" chosen, the convergence of the system is very poor or the system is not 
convergent at all. 
 An alternative method to solve the model is to build a system of equations 
written for successive periods t, t + 1, …, t + T¸ and to solve this system of nT 
nonlinear equations by one of the existing methods for nonlinear systems. Due to the 
large scale of the system, this method has been avoided in the past. Due to the recent 
advances in the parallel algorithms field it is now possible to solve such large scale 
systems with efficiency. 
 The Newton method applied to solve this model uses the following algorithm: 

 
 If the linear system b(k)  J(k)s(k) =  is very large, the use of direct methods to 
determine the solution can be very expensive due to high memory requirements and 
computational cost. 
 This is a very good reason to develop high performance parallel algorithms as 
an attractive alternative to the classical serial algorithms. Another alternative to serial 
direct methods are the iterative methods which determine only an approximation of 
the solution, but this fact does not influence the convergence of the Newton method. 
These iterative algorithms can be parallelized too.  
 We will analyse high performance iterative and direct methods used to solve 
large linear systems that result by applying the Newton method, then we will describe 
an implementation of the parallel versions of such algorithms that we’ve developed 
using C-CUDA extension. 
 

NEWTON Method 
Given an initial solution y(0) 
for k = 0,1,2, ... until convergence 

Evaluate b(k) = - h(y(k),z) 
Evaluate J(k) = ∂h(y(k),z)/∂y’ 
Solve J(k)s(k) = b(k) 
y(k+1) = y(k) + s(k) 
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2. SERIAL ITERATIVE AND DIRECT METHODS FOR SOLVING LINEAR 
SYSTEMS 
 
 Stationary iterative methods such as Jacobi and Gauss-Seidel are well known 
and there are many textbooks that describe these methods [14]. For very large linear 
systems, the most appropriate iterative methods are the so-called Krylov techniques 
[22]. Contrary to stationary iterative methods such as Jacobi or Gauss-Seidel, Krylov 
techniques use information that changes from iteration to iteration. For a linear system

b Ax = , Krylov methods compute the ith iterate x(i) as : 
  x(i) = x(i-1) + d(i)            i = 1, 2, …     
 Operations involved to find the ith update d(i) are only inner products, saxpy 
and matrix-vector products that has the complexity of )( 2nΘ , so that Krylov methods 
are computational attractive comparing to the direct methods for linear systems. 
 Perhaps the best known of the Krylov’ method is the conjugate gradient 
method. This method solves symmetric positive definite systems. The idea of the CG 
method is to update the iterates x(i) in a way to ensure the largest decrease of the 
objective function bxAxx ''

2
1

− , while keeping the direction vectors d(i) A-orthogonal. 

This method can be implemented using only one matrix-vector multiplication per 
iteration. In exact arithmetic, the CG method gives the solution for at most n 
iterations. The complete description of the CG method can be found in (Golub, G. H, 
1996). 
 Another Krylov method for general non symmetric systems is the Generalized 
Minimal Residuals (GMRES) introduced by (Saad, Y. 1996). The pseudo-code for 
GMRES is: 

 
 
 The most difficult part of this algorithm is not to lose the orthogonality of the 
direction vectors v(j). To achieve this goal the GMRES method uses a Gram-Schmidt 
orthogonalization process. GMRES requires the storage and computation of an 
increasing amount of information, vectors v and matrix H. To overcome these 

GMRES 
Given an initial solution x(0) compute r = b 
– Ax(0) 
ρ = ||r||2, v(1) = r/ ρ, β = ρ 
for k = 1,2,... until convergence 
 for j = 1,2, ... k, 
   h(j,k) = (Av(k))’v(j)  
 end 
 v(k+1) = Av(k) -   

 h(k+1,k) = ||v(k+1)||2  
 v(k+1,k) = v(k+1)/h(k+1,k) 
endfor 
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difficulties, the method can be restarted after a chosen number of iterations m. The 
current intermediate results are used as a new starting point. 
 Another Krylov method implemented by the authors is the BiConjugate 
Gradient method (Golub, G. H, 1996). BiCG uses a different approach based upon 
generating two mutually orthogonal sequences of residual vectors and A-orthogonal 
sequences of direction vectors. The updates for residuals and for the direction vectors 
are similar to those of the CG method, but are performed using A and its transpose. 
The disadvantage of the BiCG method is an erratic behaviour of the norm of the 
residuals and potential breakdowns. An improved version, called BiConjugate 
Gradient Stabilized BiCGSTAB, is presented below: 
 

 
 
 For the BiCGSTAB method we need to compute 6 saxpy operations, 4 inner 
products and 2 matrix-vector products per iteration and to store matrix A and 7 
vectors of size n. The computational complexity of the method is )( 2nΘ  like the other 
Krylov methods.  
 The operation count per iteration cannot be used to directly compare the 
performance of BiCGSTAB with GMRES because GMRES converges in much less 
iterations than BiCGSTAB. We have implemented these iterative methods and run 
experiments to determine the possible advantages of them over the direct methods. 
The results of our experiments are presented in the next section. 
 The other alternative to solve a linear system  b Ax = is the direct method that 
consists in two steps: 

 First, the matrix A is factorized, LUA =  where L is a lower triangular 
matrix with 1s on the main diagonal and U is an upper triangular matrix; in 
the case of symmetric positive definite matrices, we have tLLA = . 

 Second, we have to solve two linear systems with triangular matrices: 
bLy =  and yUx = . 

 The standard LU factorization algorithm with partial pivoting is (Golub, G. 
H, 1996): 

BiCGSTAB  
Given an initial solution x(0) compute r = b – Ax(0) 
ρ0 = 1, ρ1 = r(0)’r(0), α = 1, ώ = 1, p = 0, v = 0 
for  k = 1,2, ...  until  convergence 
β = (ρk/ ρk-1)(α/ώ) 
 p = r + β(p- ώv) 
 v = Ap 
 α = ρk/(r(0)’v) 
 s = r – αv 
 t = As 
 ώ = (t’s)(t’t) 
 x(k) = x(k-1) + αp + ώs 
     ώt 
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 The computational complexity of this algorithm is )2/2( 3nΘ . After we obtain 
the matrix factors L and U we have to solve two triangular systems: bLy =  and 

yUx = . These systems are solved using forward and backward substitution that have 
a computational complexity of )( 2nΘ , so the most important computational step is the 
matrix factorization. That’s why we have to show a special attention to the algorithms 
for matrix factorization. 
 In practice, using actual computers with memory hierarchies, the above 
algorithm is not efficient because it uses only level 1 and level 2 BLAS operations 
(Lawson, C. L.,  et. al. 1979), (Dongarra, J.,1988). As it is well-known, level 3 BLAS 
operations (Dongarra, J.,1990)  have a better efficiency than level 1 or level 2 
operations. The standard way to change a level 2 BLAS operations into a level 3 
BLAS operation is delayed updating. In the case of the LU factorization algorithm we 
will replace k rank-1 updates with a single rank-k update.  
 We present a block algorithm for LU factorization that uses level 3 BLAS 
operations. The nn × matrix A is partitioned as in Figure 1. The 00A  block consists of 
the first b columns and rows of the matrix A. 
 

 
 
Figure 1. Block LU factorization 
 
We can derive the following equations starting from A=LU: 

000000 AUL =     (1) 

100010 AUL =      (2) 

010100 AUL =      (3) 
    1111110110 AULUL =+          (4) 

Right-looking LU factorization 
for k =1:n-1 do 

find ν with k≤ ν≤n such that  
A(k,k:n)↔A(ν, k:n) 
p(k) = ν 
if A(k,k) ≠ 0 then 
 A(k+1:n, k) = A(k+1:n,k)/A(k,k) 
 A(k+1:n,k+1:n) = A(k+1:n,k+1:n) - A(k+1:n, k) 

A(k, k+1:n) 
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 Equations (1) and (2) perform the LU of the first b columns of the matrix A. 
Thus we obtain 00L , 10L  and 00U  and now we can solve the triangular system from 
equation (3) that gives 01U .  
 The problem of computing 11L  and 11U reduces to compute the factorization of 
the submatrix 01101111' ULAA −=  that can be done using the same algorithm but with 

'11A  instead of A.  
 The block LU factorization algorithm can now be derived easily: suppose we 
have divided the matrix A in column blocks with b columns in each block. The 
complete block LU factorization algorithm is given below. 
 

 
 The process of factorization is shown in Figure 2. The factorization of the 
current column block is done with the usual BLAS 2 operations and the active part of 
the matrix A will be updated with b rank-one updates simultaneously which in fact is 
a matrix-matrix multiplication (level 3 BLAS). 
 If bn >>  almost all floating point operations are done in the matrix-matrix 
multiplication operation.  

Block LU factorization 
for kb =1 to n-1 step b do 
 bf = min(kb + b – 1, n) 
 {LU factorization of A(kb : n, kb : bf ) with BLAS 2} 
 for k = kb to bf do 
  find k such that  
  if i ≠ k then 
   swap rows i and k 
  endif 

  A(i+1:n, i) = A(i+1:n, i)/A(i,i) 
  A(i+1:n, i+1: bf) = A(i+1:n, i+1: bf ) - A(i+1:n, i) A(i, i+1: bf) 
 endfor 

 {Let  be unit lower triangular matrix  stored in } 

 Solve triangular systems  
 Update  
 {Delayed updating} 
  
endfor 
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Figure 2. Block LU factorization with BLAS 3 operations 
 

3. PARALLEL IMPLEMENTATION OF THE DIRECT AND ITERATIVE 
ALGORITHMS 
 
 In 2002 Mark Harris (Harris, Mark J., 2003) pointed out a new approach to 
obtain a high megaflop rate to the applications when he started to use GPUs 
(graphical processing unit) for non-graphics applications. Nowadays Graphics 
Processing Units contain high performance many-core processors capable of very 
high FLOP rates and data throughput being truly general-purpose parallel processors. 
Since the first idea of Mark Harris many applications were ported to use the GPU for 
compute intensive parts and they obtain speedups of few orders of magnitude 
comparing to equivalent implementations written for normal CPUs. 
 At this moment there are several models for GPU computing: CUDA 
(Compute Unified Device Architecture) developed by NVIDIA (NVIDIA, 2011), 
Stream developed by AMD (|AMD, 2008) and a new emerging standard, OpenCL  
(Khronos OpenCL Working Group, 2009) that tries to unify different GPU general 
computing API implementations providing a general framework for software 
development across heterogeneous platforms consisting of both CPUs and GPUs. We 
used the C CUDA extension to develop a library that implements iterative linear 
systems solvers. 
 We’ve used CUBLAS library in the implementation of the direct and iterative 
algorithms. Our library implements LU factorization as a direct method, Jacobi, 
Gauss-Seidel, CG, GMRES and BiCGSTAB iterative methods. 
 The general flow of the solver implemented in our library is: 

 Allocate memory for matrices and vectors in the host memory; 
 Initialize matrices and vectors in the host memory; 
 Allocate memory for matrices and vectors in the device  memory; 
 Copy matrices from host memory to device memory; 
 Define the device grid layout: 
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  Number of blocks 
  
 Threads per block 

 Execute the kernel on the device; 
 Copy back the results from device memory to host memory; 
 Memory clean up. 

 
 
4. RESULTS 
 
 We’ve tested our direct and iterative solvers for both single precision and 
double precision floating point numbers. For our tests we used a computer with Intel 
Core2 Quad Q6600 procesor running at 2.4 Ghz, 4 GB of RAM and a NVIDIA 
GeForce GTX 280 graphics processing unit (GPU) with 240 cores running at 1296 
MHz, 1GB of video memory and 141.7 GB/sec memory bandwith. The operating 
system used was Windows Vista 64 bit. 
 We compared the results obtained using the CUDA code with a single 
threaded C implementation run on CPU.  
 The CPU implementation of the direct and iterative algorithms used the 
optimized ATLAS (Whaley, R. C., 2001) library as a BLAS implementation. This 
gives better performances than a standard reference implementation of the BLAS. 
 Table 1 shows the speedup obtained by the C-CUDA implementation of the 
iterative solvers compared with the traditional CPU code for single precision floating 
point numbers and table 2 shows the speedup for double precision numbers. 
 From the results presented below one can see that GPU outperforms CPU for 
numerical computations.  
 Comparing the results for each method, it can be noticed that BiCGSTAB has 
better performances than the other methods. 
 For GMRES, in our experiments we restarted the method after 35 iterations. 
The tolerance for the solution was fixed at 10-4 for all methods.  
 For our experiments we have considered linear systems containing between 
2000 and 20000 variables. 
 Table 3 shows the speedup of the CUDA implementation of the direct method 
for linear systems compared with a single threaded C implementation (the standard 
block-level implementation that can be found in LAPACK). We considered linear 
systems with 500 to 3500 equations. 
 Our performance results show the net advantage of GPU computing compared 
to the classical CPU code. The results also emphasize the advantage of the iterative 
solutions compared with the direct solution.  
 
 Another advantage of using CUDA programming model is that the code can 
be easier to read and support. The major drawback of CUDA is that it is only 
available for NVIDIA devices. A port of our library to OpenCL is intended for the 
future. 
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Table 1. Speed up for single precision FP 

 
Matrix 

dimension 
Speedup 

Jacobi Gauss-
Seidel 

GMRES(35) BiCGSTAB 

2000 67.4 69.3 78.3 82.2 
4000 56.2 65.5 81.8 84.5 
8000 68.3 67.4 80.1 81.9 
12000 66.7 68.4 81.4 84.1 
16000 71.1 69.2 79.3 86.0 
20000 72.8 69.9 81.3 86.9 

 
Table 2. Speed up for double precision FP 

Matrix 
dimension 

Speedup 
Jacobi Gauss-

Seidel 
GMRES(35) BiCGSTAB 

2000 35.2 36.1 39.6 41.7 
4000 36.1 36.0 41.2 42.3 
8000 29.1 35.2 41.6 43.6 
12000 33.6 37.8 40.5 43.9 
16000 32.3 35.9 42.8 44.0 
20000 35.6 37.1 43.2 46.1 

 
Table 3. The speedup of the direct method based on LU factorization 

Matrix 
dimension 

C-CUDA 

500 8.99 
1000 12.45 
1500 11.41 
2000 16.78 
2500 16.23 
3000 14.39 
3500 15.92 

 

5. CONCLUSIONS 
 We developed a C-CUDA library that implements the direct method with LU 
factorization and Jacobi, Gauss-Seidel and non-stationary iterative methods (GMRES, 
BiCGSTAB). The matrix-vector and matrix-matrix computations were done using 
CUBLAS routines. We compared the performance of our CUDA implementation with 
classic programs written to be run on CPU. Our performance tests show speedups of 
approximately 80 times for single precision floating point numbers and 40 times for 
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double precision for the iterative methods and about 10-15 for the direct method with 
double precision FP. These results show the immense potential of the GPGPU. In the 
future we intend to extend our direct and iterative solver library and to port it to 
OpenCL. 
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