
Institute for Economic Forecasting, Romanian Academy
"Nicolae Titulescu" University from Bucharest, Romania

1st Workshop on Modelling and Economic Forecast
"New Trends in Modelling and Economic Forecast"

 9-10 December 2011

42

CUDA BASED COMPUTATIONAL METHODS FOR
MACROECONOMIC FORECASTS,

Bogdan OANCEA, Tudorel ANDREI, Raluca DRAGOESCU

Bogdan OANCEA5,
Tudorel ANDREI6,

Raluca DRAGOESCU7

Abstract: Parallel computing can offer an enormous advantage regarding the
performance for very large applications in almost any field: economics, scientific
computing, computer vision, databases, data mining. GPUs are high performance
many-core processors that can obtain very high FLOP rates. Since the first idea of
using GPU for general purpose computing, things have evolved and now there are
several approaches to GPU programming: CUDA from NVIDIA and Stream from
AMD. CUDA is now a popular programming model for general purpose
computations on GPU for C/C++ programmers. In this paper we present an
implementation of some iterative and direct linear systems solvers that use the CUDA
programming model. Our CUDA library is used to solve macroeconometric models
with forward-looking variables based on Newton method for nonlinear systems of
equations. The most difficult step for Newton methods represents the resolution of a
large linear system for each iteration. Our library implements LU factorization,
Jacobi, Gauss-Seidel and non-stationary iterative methods (GMRES, BiCG,
BiCGSTAB) using C-CUDA extension. We compare the performance of our CUDA
implementation with classic programs written to be run on CPU. Our performance
tests show speedups of approximately 80 times for single precision floating point and
40 times for double precision.

Keywords: parallel algorithms; macroeconometric models; rational expectations
models; linear algebra; Krylov techniques;

JEL Classification: C01, C02, C53

1. INTRODUCTION

 Advances in the computational power have a large influence on almost all
fields of scientific computing. Although, during the last decade, microprocessors’

5 "Nicolae Titulescu" University, Bucharest, Romania, email: oanceab@ie.ase.ro
6 The Bucharest Academy of Economic Studies, Romania, email:andreitudorel@yahoo.com
7 "Artifex" University, Bucharest, Romania, Email: ralucadragoescu@yahoo.com

mailto:oanceab@ie.ase.ro

Institute for Economic Forecasting, Romanian Academy
"Nicolae Titulescu" University from Bucharest, Romania

1st Workshop on Modelling and Economic Forecast
"New Trends in Modelling and Economic Forecast"

 9-10 December 2011

43

performance has significantly increased and new architectures like multi-core
processors has appeared, there are still problems that cannot be solved on a single
desktop computer (Creel, 2008).
 One of the fields that need a special attention is macroeconometric modeling.
Macroeconometric models with forward-looking variables are a special class of
models which involve very large systems of equations. The matrices resulting from
these models could be so large that doesn’t fit with the internal memory of a single
desktop computer. For such models it is necessary to develop high performance
parallel algorithms that can be run in parallel execution environments like parallel
computers, clusters of workstations or grid environments.
 A special kind of macroeconometric models are the rational expectations
models (Fischer, 1992). These models contain variables that forecast the economic
system state for the future periods t + 1, t + 2, ... , t + T, where T is the forecast time
horizon. Depending on the size of the forecast time horizon, macroeconometric
models with rational expectations could give raise to systems with tens or hundreds of
thousands of equations.
 For example, MULTIMOD model (Isard, P., 2000), (Masson, P, 1990) is a
dynamic, annual forecast model designed by the International Monetary Fund that
describes the economic behaviour of the whole world decomposed in 8 industrial
regions and the rest of the countries. The model contains 466 equations. If we want to
solve the model for a 30 years time horizon then we will have to solve a nonlinear
system containing 13908 equations which is not a simple task nor for the most
powerful workstations.
 QPM (Quarterly Projection Model)(Armstrong, J, 1995) (Coletti, D., 1996) is
a quarterly model developed by the Bank of Canada to obtain economic forecasts and
as a research tool for the analysis of macroeconomic policies and economic
equilibrium on long term. The QPM model has 329 nonlinear equations. The
resolution of the model for a 30 years time horizon means to solve a system of 39480
equations.
 FRB/US (Brayton, F., 1996, 1997) is a quarterly econometric model that
describes the U.S. economy and has around 300 equations. An extension of this model
is FRB/GLOBAL that describes the world economy using few thousands equations.
The resolution of these models for a 20-30 years time horizon implies nonlinear
systems with hundreds of thousands of equations.
 Let’s consider the general form of the nonlinear model with rational
expectations:
 hi(yt,yt-1, ... ,yt-r,yt+1|t-1, ... ,yt+h|t-1, zt) = 0, i = 1,... m
where 1−+ tjty is the expectation of yt+j conditioned on the information available at the
end of the period t-1 and zt represents the exogenous and random variables. For
consistent expectations, the forward expectations 1−+ tjty have to coincide with the
next period’s forecast when solving the model conditioned on the information
available at the end of period t-1. These expectations are therefore linked in time
and solving the model for each yt conditioned on some start period 0 requires each

Institute for Economic Forecasting, Romanian Academy
"Nicolae Titulescu" University from Bucharest, Romania

1st Workshop on Modelling and Economic Forecast
"New Trends in Modelling and Economic Forecast"

 9-10 December 2011

44

yt+j|0 for j = 1,2, ... T-t and a final condition yT+j|0 , j = 1, 2 ..., h. Considering these
equations for successive time periods a large nonlinear system of equations will
result.
 One of the first methods used to solve such models was the extended path
algorithm proposed by Fair and Taylor (Fair, R.C., and J. B.Taylor 1983). They use
Gauss-Seidel iterations to solve the model, period after period, for a given time
horizon. The convergence of this method depends on the order of the equations. The
endogenous forecast variables are considered as predetermined and then the model is
solved period after period for a time horizon.
 The solutions thus obtained represent the new values for the forecast variables.
The process is repeated until the convergence is obtained. The advantage of this
method is it’s simplicity in implementation and the low storage requirements but this
method has a main disadvantage: if the initial values for the endogenous variables are
not "well" chosen, the convergence of the system is very poor or the system is not
convergent at all.
 An alternative method to solve the model is to build a system of equations
written for successive periods t, t + 1, …, t + T¸ and to solve this system of nT
nonlinear equations by one of the existing methods for nonlinear systems. Due to the
large scale of the system, this method has been avoided in the past. Due to the recent
advances in the parallel algorithms field it is now possible to solve such large scale
systems with efficiency.
 The Newton method applied to solve this model uses the following algorithm:

 If the linear system b(k) J(k)s(k) = is very large, the use of direct methods to
determine the solution can be very expensive due to high memory requirements and
computational cost.
 This is a very good reason to develop high performance parallel algorithms as
an attractive alternative to the classical serial algorithms. Another alternative to serial
direct methods are the iterative methods which determine only an approximation of
the solution, but this fact does not influence the convergence of the Newton method.
These iterative algorithms can be parallelized too.
 We will analyse high performance iterative and direct methods used to solve
large linear systems that result by applying the Newton method, then we will describe
an implementation of the parallel versions of such algorithms that we’ve developed
using C-CUDA extension.

NEWTON Method
Given an initial solution y(0)
for k = 0,1,2, ... until convergence

Evaluate b(k) = - h(y(k),z)
Evaluate J(k) = ∂h(y(k),z)/∂y’
Solve J(k)s(k) = b(k)
y(k+1) = y(k) + s(k)

Institute for Economic Forecasting, Romanian Academy
"Nicolae Titulescu" University from Bucharest, Romania

1st Workshop on Modelling and Economic Forecast
"New Trends in Modelling and Economic Forecast"

 9-10 December 2011

45

2. SERIAL ITERATIVE AND DIRECT METHODS FOR SOLVING LINEAR
SYSTEMS

 Stationary iterative methods such as Jacobi and Gauss-Seidel are well known
and there are many textbooks that describe these methods [14]. For very large linear
systems, the most appropriate iterative methods are the so-called Krylov techniques
[22]. Contrary to stationary iterative methods such as Jacobi or Gauss-Seidel, Krylov
techniques use information that changes from iteration to iteration. For a linear system

b Ax = , Krylov methods compute the ith iterate x(i) as :
 x(i) = x(i-1) + d(i) i = 1, 2, …
 Operations involved to find the ith update d(i) are only inner products, saxpy
and matrix-vector products that has the complexity of)(2nΘ , so that Krylov methods
are computational attractive comparing to the direct methods for linear systems.
 Perhaps the best known of the Krylov’ method is the conjugate gradient
method. This method solves symmetric positive definite systems. The idea of the CG
method is to update the iterates x(i) in a way to ensure the largest decrease of the
objective function bxAxx ''

2
1

− , while keeping the direction vectors d(i) A-orthogonal.

This method can be implemented using only one matrix-vector multiplication per
iteration. In exact arithmetic, the CG method gives the solution for at most n
iterations. The complete description of the CG method can be found in (Golub, G. H,
1996).
 Another Krylov method for general non symmetric systems is the Generalized
Minimal Residuals (GMRES) introduced by (Saad, Y. 1996). The pseudo-code for
GMRES is:

 The most difficult part of this algorithm is not to lose the orthogonality of the
direction vectors v(j). To achieve this goal the GMRES method uses a Gram-Schmidt
orthogonalization process. GMRES requires the storage and computation of an
increasing amount of information, vectors v and matrix H. To overcome these

GMRES
Given an initial solution x(0) compute r = b
– Ax(0)
ρ = ||r||2, v(1) = r/ ρ, β = ρ
for k = 1,2,... until convergence
 for j = 1,2, ... k,
 h(j,k) = (Av(k))’v(j)
 end
 v(k+1) = Av(k) -

 h(k+1,k) = ||v(k+1)||2
 v(k+1,k) = v(k+1)/h(k+1,k)
endfor

Institute for Economic Forecasting, Romanian Academy
"Nicolae Titulescu" University from Bucharest, Romania

1st Workshop on Modelling and Economic Forecast
"New Trends in Modelling and Economic Forecast"

 9-10 December 2011

46

difficulties, the method can be restarted after a chosen number of iterations m. The
current intermediate results are used as a new starting point.
 Another Krylov method implemented by the authors is the BiConjugate
Gradient method (Golub, G. H, 1996). BiCG uses a different approach based upon
generating two mutually orthogonal sequences of residual vectors and A-orthogonal
sequences of direction vectors. The updates for residuals and for the direction vectors
are similar to those of the CG method, but are performed using A and its transpose.
The disadvantage of the BiCG method is an erratic behaviour of the norm of the
residuals and potential breakdowns. An improved version, called BiConjugate
Gradient Stabilized BiCGSTAB, is presented below:

 For the BiCGSTAB method we need to compute 6 saxpy operations, 4 inner
products and 2 matrix-vector products per iteration and to store matrix A and 7
vectors of size n. The computational complexity of the method is)(2nΘ like the other
Krylov methods.
 The operation count per iteration cannot be used to directly compare the
performance of BiCGSTAB with GMRES because GMRES converges in much less
iterations than BiCGSTAB. We have implemented these iterative methods and run
experiments to determine the possible advantages of them over the direct methods.
The results of our experiments are presented in the next section.
 The other alternative to solve a linear system b Ax = is the direct method that
consists in two steps:

 First, the matrix A is factorized, LUA = where L is a lower triangular
matrix with 1s on the main diagonal and U is an upper triangular matrix; in
the case of symmetric positive definite matrices, we have tLLA = .

 Second, we have to solve two linear systems with triangular matrices:
bLy = and yUx = .

 The standard LU factorization algorithm with partial pivoting is (Golub, G.
H, 1996):

BiCGSTAB
Given an initial solution x(0) compute r = b – Ax(0)
ρ0 = 1, ρ1 = r(0)’r(0), α = 1, ώ = 1, p = 0, v = 0
for k = 1,2, ... until convergence
β = (ρk/ ρk-1)(α/ώ)
 p = r + β(p- ώv)
 v = Ap
 α = ρk/(r(0)’v)
 s = r – αv
 t = As
 ώ = (t’s)(t’t)
 x(k) = x(k-1) + αp + ώs
 ώt

Institute for Economic Forecasting, Romanian Academy
"Nicolae Titulescu" University from Bucharest, Romania

1st Workshop on Modelling and Economic Forecast
"New Trends in Modelling and Economic Forecast"

 9-10 December 2011

47

 The computational complexity of this algorithm is)2/2(3nΘ . After we obtain
the matrix factors L and U we have to solve two triangular systems: bLy = and

yUx = . These systems are solved using forward and backward substitution that have
a computational complexity of)(2nΘ , so the most important computational step is the
matrix factorization. That’s why we have to show a special attention to the algorithms
for matrix factorization.
 In practice, using actual computers with memory hierarchies, the above
algorithm is not efficient because it uses only level 1 and level 2 BLAS operations
(Lawson, C. L., et. al. 1979), (Dongarra, J.,1988). As it is well-known, level 3 BLAS
operations (Dongarra, J.,1990) have a better efficiency than level 1 or level 2
operations. The standard way to change a level 2 BLAS operations into a level 3
BLAS operation is delayed updating. In the case of the LU factorization algorithm we
will replace k rank-1 updates with a single rank-k update.
 We present a block algorithm for LU factorization that uses level 3 BLAS
operations. The nn × matrix A is partitioned as in Figure 1. The 00A block consists of
the first b columns and rows of the matrix A.

Figure 1. Block LU factorization

We can derive the following equations starting from A=LU:

000000 AUL = (1)

100010 AUL = (2)

010100 AUL = (3)
 1111110110 AULUL =+ (4)

Right-looking LU factorization
for k =1:n-1 do

find ν with k≤ ν≤n such that
A(k,k:n)↔A(ν, k:n)
p(k) = ν
if A(k,k) ≠ 0 then
 A(k+1:n, k) = A(k+1:n,k)/A(k,k)
 A(k+1:n,k+1:n) = A(k+1:n,k+1:n) - A(k+1:n, k)

A(k, k+1:n)

Institute for Economic Forecasting, Romanian Academy
"Nicolae Titulescu" University from Bucharest, Romania

1st Workshop on Modelling and Economic Forecast
"New Trends in Modelling and Economic Forecast"

 9-10 December 2011

48

 Equations (1) and (2) perform the LU of the first b columns of the matrix A.
Thus we obtain 00L , 10L and 00U and now we can solve the triangular system from
equation (3) that gives 01U .
 The problem of computing 11L and 11U reduces to compute the factorization of
the submatrix 01101111' ULAA −= that can be done using the same algorithm but with

'11A instead of A.
 The block LU factorization algorithm can now be derived easily: suppose we
have divided the matrix A in column blocks with b columns in each block. The
complete block LU factorization algorithm is given below.

 The process of factorization is shown in Figure 2. The factorization of the
current column block is done with the usual BLAS 2 operations and the active part of
the matrix A will be updated with b rank-one updates simultaneously which in fact is
a matrix-matrix multiplication (level 3 BLAS).
 If bn >> almost all floating point operations are done in the matrix-matrix
multiplication operation.

Block LU factorization
for kb =1 to n-1 step b do
 bf = min(kb + b – 1, n)
 {LU factorization of A(kb : n, kb : bf) with BLAS 2}
 for k = kb to bf do
 find k such that
 if i ≠ k then
 swap rows i and k
 endif

 A(i+1:n, i) = A(i+1:n, i)/A(i,i)
 A(i+1:n, i+1: bf) = A(i+1:n, i+1: bf) - A(i+1:n, i) A(i, i+1: bf)
 endfor

 {Let be unit lower triangular matrix stored in }

 Solve triangular systems
 Update
 {Delayed updating}

endfor

Institute for Economic Forecasting, Romanian Academy
"Nicolae Titulescu" University from Bucharest, Romania

1st Workshop on Modelling and Economic Forecast
"New Trends in Modelling and Economic Forecast"

 9-10 December 2011

49

Figure 2. Block LU factorization with BLAS 3 operations

3. PARALLEL IMPLEMENTATION OF THE DIRECT AND ITERATIVE
ALGORITHMS

 In 2002 Mark Harris (Harris, Mark J., 2003) pointed out a new approach to
obtain a high megaflop rate to the applications when he started to use GPUs
(graphical processing unit) for non-graphics applications. Nowadays Graphics
Processing Units contain high performance many-core processors capable of very
high FLOP rates and data throughput being truly general-purpose parallel processors.
Since the first idea of Mark Harris many applications were ported to use the GPU for
compute intensive parts and they obtain speedups of few orders of magnitude
comparing to equivalent implementations written for normal CPUs.
 At this moment there are several models for GPU computing: CUDA
(Compute Unified Device Architecture) developed by NVIDIA (NVIDIA, 2011),
Stream developed by AMD (|AMD, 2008) and a new emerging standard, OpenCL
(Khronos OpenCL Working Group, 2009) that tries to unify different GPU general
computing API implementations providing a general framework for software
development across heterogeneous platforms consisting of both CPUs and GPUs. We
used the C CUDA extension to develop a library that implements iterative linear
systems solvers.
 We’ve used CUBLAS library in the implementation of the direct and iterative
algorithms. Our library implements LU factorization as a direct method, Jacobi,
Gauss-Seidel, CG, GMRES and BiCGSTAB iterative methods.
 The general flow of the solver implemented in our library is:

 Allocate memory for matrices and vectors in the host memory;
 Initialize matrices and vectors in the host memory;
 Allocate memory for matrices and vectors in the device memory;
 Copy matrices from host memory to device memory;
 Define the device grid layout:

Institute for Economic Forecasting, Romanian Academy
"Nicolae Titulescu" University from Bucharest, Romania

1st Workshop on Modelling and Economic Forecast
"New Trends in Modelling and Economic Forecast"

 9-10 December 2011

50

 Number of blocks

 Threads per block

 Execute the kernel on the device;
 Copy back the results from device memory to host memory;
 Memory clean up.

4. RESULTS

 We’ve tested our direct and iterative solvers for both single precision and
double precision floating point numbers. For our tests we used a computer with Intel
Core2 Quad Q6600 procesor running at 2.4 Ghz, 4 GB of RAM and a NVIDIA
GeForce GTX 280 graphics processing unit (GPU) with 240 cores running at 1296
MHz, 1GB of video memory and 141.7 GB/sec memory bandwith. The operating
system used was Windows Vista 64 bit.
 We compared the results obtained using the CUDA code with a single
threaded C implementation run on CPU.
 The CPU implementation of the direct and iterative algorithms used the
optimized ATLAS (Whaley, R. C., 2001) library as a BLAS implementation. This
gives better performances than a standard reference implementation of the BLAS.
 Table 1 shows the speedup obtained by the C-CUDA implementation of the
iterative solvers compared with the traditional CPU code for single precision floating
point numbers and table 2 shows the speedup for double precision numbers.
 From the results presented below one can see that GPU outperforms CPU for
numerical computations.
 Comparing the results for each method, it can be noticed that BiCGSTAB has
better performances than the other methods.
 For GMRES, in our experiments we restarted the method after 35 iterations.
The tolerance for the solution was fixed at 10-4 for all methods.
 For our experiments we have considered linear systems containing between
2000 and 20000 variables.
 Table 3 shows the speedup of the CUDA implementation of the direct method
for linear systems compared with a single threaded C implementation (the standard
block-level implementation that can be found in LAPACK). We considered linear
systems with 500 to 3500 equations.
 Our performance results show the net advantage of GPU computing compared
to the classical CPU code. The results also emphasize the advantage of the iterative
solutions compared with the direct solution.

 Another advantage of using CUDA programming model is that the code can
be easier to read and support. The major drawback of CUDA is that it is only
available for NVIDIA devices. A port of our library to OpenCL is intended for the
future.

Institute for Economic Forecasting, Romanian Academy
"Nicolae Titulescu" University from Bucharest, Romania

1st Workshop on Modelling and Economic Forecast
"New Trends in Modelling and Economic Forecast"

 9-10 December 2011

51

Table 1. Speed up for single precision FP

Matrix

dimension
Speedup

Jacobi Gauss-
Seidel

GMRES(35) BiCGSTAB

2000 67.4 69.3 78.3 82.2
4000 56.2 65.5 81.8 84.5
8000 68.3 67.4 80.1 81.9
12000 66.7 68.4 81.4 84.1
16000 71.1 69.2 79.3 86.0
20000 72.8 69.9 81.3 86.9

Table 2. Speed up for double precision FP

Matrix
dimension

Speedup
Jacobi Gauss-

Seidel
GMRES(35) BiCGSTAB

2000 35.2 36.1 39.6 41.7
4000 36.1 36.0 41.2 42.3
8000 29.1 35.2 41.6 43.6
12000 33.6 37.8 40.5 43.9
16000 32.3 35.9 42.8 44.0
20000 35.6 37.1 43.2 46.1

Table 3. The speedup of the direct method based on LU factorization

Matrix
dimension

C-CUDA

500 8.99
1000 12.45
1500 11.41
2000 16.78
2500 16.23
3000 14.39
3500 15.92

5. CONCLUSIONS
 We developed a C-CUDA library that implements the direct method with LU
factorization and Jacobi, Gauss-Seidel and non-stationary iterative methods (GMRES,
BiCGSTAB). The matrix-vector and matrix-matrix computations were done using
CUBLAS routines. We compared the performance of our CUDA implementation with
classic programs written to be run on CPU. Our performance tests show speedups of
approximately 80 times for single precision floating point numbers and 40 times for

Institute for Economic Forecasting, Romanian Academy
"Nicolae Titulescu" University from Bucharest, Romania

1st Workshop on Modelling and Economic Forecast
"New Trends in Modelling and Economic Forecast"

 9-10 December 2011

52

double precision for the iterative methods and about 10-15 for the direct method with
double precision FP. These results show the immense potential of the GPGPU. In the
future we intend to extend our direct and iterative solver library and to port it to
OpenCL.

REFERENCES
1. AMD, ATI Stream Computing - Technical Overview. AMD, Tech. Rep. 2008
2. Anderson, E., Z. Bai, J. Demmel, J., Dongarra, J. Du Croz, A. Greenbaum, S.

Hammarling, A. Mckenney, S. Ostrouchov, And D. Sorensen, LAPACK
Users’s Guide. SIAM, Philadelphia, 1992.

3. Armstrong, J., R. Black, D. Laxton, and D. Rose, "The Bank of Canada’s New
Quarterly Projection Model QPM. Part 2: A Robust Method for Simulating
Forward-Looking Models", Technical Report No. 73, Ottawa: The Bank of
Canada, 1995.

4. Black, R., D. Laxton, and R. Tetlow, "The Bank of Canada’s New Quarterly
Projection Model QPM. Part 1: The Steady-State Model", Technical Report
No. 72, Ottawa: The Bank of Canada, November, 1994.

5. Brayton, F., and P. Tinsley, "A guide to FRB/US : A Macroeconomic Model of the
United States", Technical Report, Finance and Economics Discussion Series,
Federal Reserve Board, 1996.

6. Brayton, F., E. Mauskopf, D. Reifschneider, P. Tinsley, and J. Williams, "The Role
of Expectations in the FRB/US Macroeconomic Model", Federal Reserve
Bulletin, 1997.

7. Coletti, D., B. Hunt, D. Roseand, and R. Tetlow , "The Bank of Canada’s New
Quarterly Projection Model QPM. Part 3: The Dynamic Model", Technical
Report No. 75, Ottawa: The Bank of Canada, 1996.

8. Creel, M., and W. L. Goffe, "Multi-core CPUs, Clusters, and Grid Computing: a
Tutorial", Computational Economics, 32 (4), 353-382, 2008.

9. Dongarra, J., J. Du Croz, S. Hammarling, and I. Duff, "A set of level 3 basic linear
Algebra subprograms", ACM Transactions on Mathematical Software, 16 (1),
1-17, 1990.

10. Dongarra, J., J. Du Croz, S. Hammarling, and R. Hanson, "An extended set of
FORTRAN basic linear algebra subprograms", ACM Transactions on
Mathematical Software, 14, (1), 1-17, 1988.

11. Doornik, J. A., D. F. Hendry, and N. Shephard, "Parallel Computation in
Econometrics: A Simplified Approach" Chapter 15 in Handbook of Parallel
Computing and Statistics, Chapman & Hall/CRC, 449-476, 2007.

12. Fair, R.C., and J. B.Taylor, "Solution and Maximum Likelihood Estimation of
Dynamic Nonlinear Rational Expectations Models", Econometrica, 51(4),
1169-1185, 1983.

13. Fisher, P., Rational Expectations in Macroeconomic Models. Kluwer Academic
Publishers, Dordrecht, 1992.

Institute for Economic Forecasting, Romanian Academy
"Nicolae Titulescu" University from Bucharest, Romania

1st Workshop on Modelling and Economic Forecast
"New Trends in Modelling and Economic Forecast"

 9-10 December 2011

53

14. Golub, G. H., and C. F. Van Loan, Matrix Computations, Johns Hopkins Series in
Mathematical Sciences, The Johns Hopkins University Press, 1996.

15. Harris, Mark J., William V. Baxter III, Thorsten Scheuermann, and Anselmo
Lastra, "Simulation of Cloud Dynamics on Graphics Hardware." In
Proceedings of the GGRAPH/Eurographics Workshop on Graphics Hardware
2003, pp. 92-101, 2003

16. Isard, P., "The Role of MULTIMOD in IMF’s Policy Analysis", Technical Report
IMF Policy Discussion Paper, International Monetary Fund, Washington DC,
2000.

17. Khronos OpenCL Working Group, The OpenCL Specification - Version 1.0. The
Khronos Group, Tech. Rep. 2009.

18. Lawson, C. L., R. J. Hanson, D. R. Kincaid, and F. T. Krogh, "Basic linear
algebra subprograms for Fortran usage", ACM Transactions on Mathematical
Software, 5 (3), 308-323, 1979.

19. Levin, J., and R. Tryon, "Evaluating International Economic Policy with the
Federal Reserves Global Model", Federal Reserve Bulletin, 1997.

20. Masson, P., S. Symanski, and G. Meredith, "MULTIMOD Mark II: A Revised
and Extended Model", Technical Report, Occasional paper 71, International
Monetary Fund, Washington DC, 1990.

21. NVIDIA, CUDA C Programming Guide, Version 4.0, 2011.
22. Saad, Y. Iterative Methods for Sparse Linear Systems, PWS Publishing Company,

1996.
23. Whaley, R. C., A. Petitet, and J. Dongarra, "Automated Empirical Optimization of

Software and the ATLAS project", Parallel Computing, 27(1-2), 3-35, 2001.

